

Code No: D5110 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **M.TECH II - SEMESTER EXAMINATIONS, APRIL/MAY 2012 APPLIED NUMERICAL METHODS** (CHEMICAL ENGINEERING) Max. Marks: 60

Time: 3hours

Answer any five questions

All questions carry equal marks - - -

1. Solve the following by LU decomposition x + 2y + z - 2w = 62x + 3y + 2z - 2w = 83x + y + 2z - w = 4

- 3x + 2y + 2z 3w = 9
- 2. Sove the following equations by Gauss seidel method
 - 7x + y + 4z = 52x + 3y + 8z = 9x + 8y + 4z = 2
- Find the largest eigen value of A = $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ by power method. 3.
- 4. Find the eigen values and the corresponding eigen vectors of
 - $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$
- 5.a) The amount A of a substance remaining in a reaction system after an interval of time t in a certain chemical experiment is given by the following data.

Find value of A at $t = 11$.	
-------------------------------	--

t	2	5	8	14	
Α	94.8	87.9	813	68.7	

b) Find f(7.5) from the following table using Newton's backward formula.

х	1	2	3	4	5	б	7	8	
f(x)	1	8	27	б4	125	216	343	512	

6. Find y (0.08) using Adam's predictor corrector method given that,

$$\frac{dy}{dx} = 2e^x - y, y(0) = 2$$

by solving for initial values y(0.1), y(0.2), y(0.3) by Runge Kutta method by taking h = .1

7. Solve by Galerkin method
$$\frac{d^2 y}{dx^2} + y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

8. Solve y'' = x - y, y(0) = 1, $y(\frac{\pi}{2}) = 2$ by taking $h = \frac{\pi}{8}$, by shooting method, given that initial guesses for $y_1'(0)$ and $y_2'(0)$ are 1 and 2.
